Genome Sequence of *Brachybacterium squillarum* M-6-3T, Isolated from Salt-Fermented Seafood

Seong-Kyu Park, Seong Woon Roh, Tae Woong Whon, and Jin-Woo Bae*

Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea

Received 14 September 2011/Accepted 14 September 2011

*Corresponding author. Mailing address: Department of Biology, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea. Phone: (82)-2-961-2312. Fax: (82)-2-961-0244. E-mail: baejw@khu.ac.kr.

Brachybacterium squillarum M-6-3T was isolated from salt-fermented seafood in Korea and belongs to the *Dermabacteraceae*, a rather isolated family within the actinobacterial suborder *Micrococccineae*. Here, we present the draft genome sequence of the type strain *Brachybacterium squillarum* M-6-3T (3,191,479 bp), a Gram-positive bacterium with high (72.8%) G+C content.

The genus *Brachybacterium* belongs to the family *Dermabacteraceae* (class Actinobacteria). Organisms belonging to that genus are Gram-positive bacteria containing genomic DNA with high guanine and cytosine content (4, 18). Since the genus was first identified in 1988, 14 species (*Brachybacterium alimentarium*, *B. conglomera*um, *B. faecium*, *B. fresconis*, *B. muris*, *B. nesterenkovi*, *B. paraconglomera*um, *B. phenoliresistens*, *B. rhamnosum*, *B. sacelli*, *B. saurashtrense*, *B. squillarum*, *B. tyrofermentans*, and *B. zhongshanense*) have been isolated from various sources (2–4, 6–8, 13, 15, 16, 20). We isolated type strain *B. squillarum* M-6-3T, a Gram-positive, nonmotile, coccolid-shaped bacterium with high G+C content, while studying the microbial diversity of salt-fermented foods made of tiny shrimp (13). The genus *Brachybacterium* has been characterized previously (4), and the strain possesses a type A4/H9253/H11001-shaped bacterium with high G+C content. whereas ribosomal RNA identities were confirmed using RNAmmer software (9).

The unclosed draft genome of *B. squillarum* M-6-3T is 3,191,479 bp long, with 72.8% G+C content. There are 2,935 putative coding sequences (CDSs), and the genome sequence contains 50 predicted tRNA genes and two predicted copies of the 5S, 16S, and 23S rRNA genes. Of the 2,935 genes identified, 2,145 CDSs were classified into 18 (J, K, L, D, O, M, N, P, T, C, G, E, F, H, I, Q, R, and S) functional COG categories. The unannotated genes may be assigned upon closure of the genome.

In comparison with the *B. faecium* genome, the genome of *M-6-3T* contains a higher percentage of genes associated with carbohydrate transport and metabolism (G), whereas there are no annotated genes associated with defense mechanisms (V), intracellular trafficking and secretion (U), and RNA processing and modification (A). Comparative tools available on the RAST server (1) identified 2,060 genes shared between *B. squillarum* and *B. faecium* (the only publicly available genome corresponding to the genus *Brachybacterium*).

Nucleotide sequence accession numbers. The sequence determined in this whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under accession no. AGBX0000000. The version described in this paper is the first version, available under accession no. AGBX0100000.

This work was supported by a grant from the Next-Generation BioGreen 21 Program (grant PJ008208), Rural Development Administration, Republic of Korea.

REFERENCES

6. Gontia, I., K. Kavita, M. Schmid, A. Hartmann, and B. Jha. 7 January 2011, posting date. *Brachybacterium saurashtrense* sp. nov., a halotolerant root-